Nilai turunan pertama dari fungsi f(x)=(x+1/√x)(√x+1/x) dengan nilai x=4 adalah . . .
f(x) = (x.√x+x.1/x+1/√x.√x+1/√x.1/x)
f(x) = x^(3/2)+1+1+1/x^(3/2)
f(x) = x^(3/2)+x^(-3/2)+2
f'(x) = 3/2 x^(1/2)-3/2 x^(-5/2)
f'(4) = 3/2 (4)^(1/2)-3/2 (4)^(-5/2)
f'(4) = 3/2 (2) -3/2 (2)^(-5)
f'(4) = 3 - 3/2 (1/32)
f'(4) = 3 - 3/64
f'(4) = (192 - 3)/64
f'(4) = 189/64
f(x) = x^(3/2)+1+1+1/x^(3/2)
f(x) = x^(3/2)+x^(-3/2)+2
f'(x) = 3/2 x^(1/2)-3/2 x^(-5/2)
f'(4) = 3/2 (4)^(1/2)-3/2 (4)^(-5/2)
f'(4) = 3/2 (2) -3/2 (2)^(-5)
f'(4) = 3 - 3/2 (1/32)
f'(4) = 3 - 3/64
f'(4) = (192 - 3)/64
f'(4) = 189/64